Speeding up Training with Tree Kernels for Node Relation Labeling

نویسندگان

  • Jun'ichi Kazama
  • Kentaro Torisawa
چکیده

We present a method for speeding up the calculation of tree kernels during training. The calculation of tree kernels is still heavy even with efficient dynamic programming (DP) procedures. Our method maps trees into a small feature space where the inner product, which can be calculated much faster, yields the same value as the tree kernel for most tree pairs. The training is sped up by using the DP procedure only for the exceptional pairs. We describe an algorithm that detects such exceptional pairs and converts trees into vectors in a feature space. We propose tree kernels on marked labeled ordered trees and show that the training of SVMs for semantic role labeling using these kernels can be sped up by a factor of several tens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Linearization of Tree Kernels over Large-Scale Data

Convolution tree kernels have been successfully applied to many language processing tasks for achieving state-of-the-art accuracy. Unfortunately, higher computational complexity of learning with kernels w.r.t. using explicit feature vectors makes them less attractive for large-scale data. In this paper, we study the latest approaches to solve such problems ranging from feature hashing to revers...

متن کامل

Efficient Linearization of Tree Kernel Functions

The combination of Support Vector Machines with very high dimensional kernels, such as string or tree kernels, suffers from two major drawbacks: first, the implicit representation of feature spaces does not allow us to understand which features actually triggered the generalization; second, the resulting computational burden may in some cases render unfeasible to use large data sets for trainin...

متن کامل

SVM Optimization for Lattice Kernels

This paper presents general techniques for speeding up largescale SVM training when using sequence kernels. Our techniques apply to the family of kernels commonly used in a variety of natural language processing applications, including speech recognition, speech synthesis, and machine translation. We report the results of large-scale experiments demonstrating dramatic reduction of the training ...

متن کامل

Exploiting Rich Syntactic Information for Relation Extraction from Biomedical Articles∗

This paper proposes a ternary relation extraction method primarily based on rich syntactic information. We identify PROTEIN-ORGANISM-LOCATION relations in the text of biomedical articles. Different kernel functions are used with an SVM learner to integrate two sources of information from syntactic parse trees: (i) a large number of syntactic features that have been shown useful for Semantic Rol...

متن کامل

Tree Kernels for Semantic Role Labeling

The availability of large scale data sets of manually annotated predicate–argument structures has recently favored the use of machine learning approaches to the design of automated semantic role labeling (SRL) systems. The main research in this area relates to the design choices for feature representation and for effective decompositions of the task in different learning models. Regarding the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005